A PTAS for the Minimum Consensus Clustering Problem with a Fixed Number of Clusters
نویسندگان
چکیده
The Consensus Clustering problem has been introduced as an effective way to analyze the results of different microarray experiments [5, 6]. The problem consists of looking for a partition that best summarizes a set of input partitions (each corresponding to a different microarray experiment) under a simple and intuitive cost function. The problem admits polynomial time algorithms on two input partitions, but is APX-hard on three input partitions. We investigate the restriction of Consensus Clustering when the output partition is required to contain at most k sets, giving a polynomial time approximation scheme (PTAS) while proving the NP-hardness of this restriction.
منابع مشابه
A Polynomial Time Approximation Scheme for k-Consensus Clustering
This paper introduces a polynomial time approximation scheme for the metric Correlation Clustering problem, when the number of clusters returned is bounded (by k). Consensus Clustering is a fundamental aggregation problem, with considerable application, and it is analysed here as a metric variant of the Correlation Clustering problem. The PTAS exploits a connection between Correlation Clusterin...
متن کاملانتخاب اعضای ترکیب در خوشهبندی ترکیبی با استفاده از رأیگیری
Clustering is the process of division of a dataset into subsets that are called clusters, so that objects within a cluster are similar to each other and different from objects of the other clusters. So far, a lot of algorithms in different approaches have been created for the clustering. An effective choice (can combine) two or more of these algorithms for solving the clustering problem. Ensemb...
متن کاملOn the Approximation of Correlation Clustering and Consensus Clustering
The Correlation Clustering problem has been introduced recently [N. Bansal, A. Blum, S. Chawla, Correlation Clustering, in: Proc. 43rd Symp. Foundations of Computer Science, FOCS, 2002, pp. 238–247] as a model for clustering data when a binary relationship between data points is known. More precisely, for each pair of points we have two scores measuring the similarity and dissimilarity respecti...
متن کاملAn Improved SSPCO Optimization Algorithm for Solve of the Clustering Problem
Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009